Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Metabolites ; 13(3)2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2278798

ABSTRACT

Metabolomics is a relatively new research area that focuses mostly on the profiling of selected molecules and metabolites within the organism. A SARS-CoV-2 infection itself can lead to major disturbances in the metabolite profile of the infected individuals. The aim of this study was to analyze metabolomic changes in the urine of patients during the acute phase of COVID-19 and approximately one month after infection in the recovery period. We discuss the observed changes in relation to the alterations resulting from changes in the blood plasma metabolome, as described in our previous study. The metabolome analysis was performed using NMR spectroscopy from the urine of patients and controls. The urine samples were collected at three timepoints, namely upon hospital admission, during hospitalization, and after discharge from the hospital. The acute COVID-19 phase induced massive alterations in the metabolic composition of urine was linked with various changes taking place in the organism. Discriminatory analyses showed the feasibility of successful discrimination of COVID-19 patients from healthy controls based on urinary metabolite levels, with the highest significance assigned to citrate, Hippurate, and pyruvate. Our results show that the metabolomic changes persist one month after the acute phase and that the organism is not fully recovered.

2.
Front Public Health ; 11: 1116636, 2023.
Article in English | MEDLINE | ID: covidwho-2269848

ABSTRACT

Introduction: Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods: In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results: (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion: The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , RNA, Viral , Wastewater , Polymerase Chain Reaction
3.
Acta Virol ; 67(1): 3-12, 2023.
Article in English | MEDLINE | ID: covidwho-2253310

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in air traffic is important in the prevention of the virus spreading from abroad. The gold standard for SARS-CoV-2 detection is RT-qPCR; however, for early and low viral load detection, a much more sensitive method, such as droplet digital PCR (ddPCR), is required. Our first step was to developed both, ddPCR and RT-qPCR methods, for sensitive SARS-CoV-2 detection. Analysis of ten swab/saliva samples of five Covid-19 patients in different stages of disease showed positivity in 6/10 samples with RT-qPCR and 9/10 with ddPCR. We also used our RT-qPCR method for SARS-CoV-2 detection without the need of RNA extraction, obtaining results in 90-120 minutes. We analyzed 116 self-collected saliva samples from passengers and airport staff arriving from abroad. All samples were negative by RT-qPCR, while 1 was positive, using ddPCR. Lastly, we developed ddPCR assays for SARS-CoV-2 variants identification (alpha, beta, gamma, delta/kappa) that are more economically advantageous when compared to NGS. Our findings demonstrated that saliva samples can be stored at ambient temperature, as we did not observe any significant difference between a fresh sample and the same sample after 24 hours (p = 0.23), hence, saliva collection is the optimal route for sampling airplane passengers. Our results also showed that droplet digital PCR is a more suitable method for detecting virus from saliva, compared to RT-qPCR. Keywords: COVID-19; RT-PCR; ddPCR; SARS-CoV-2; nasopharyngeal swab; saliva.


Subject(s)
Air Travel , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Sensitivity and Specificity , Polymerase Chain Reaction , RNA, Viral/genetics , Saliva/chemistry , Specimen Handling/methods
4.
Viruses ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2099857

ABSTRACT

To explore a genomic pool of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the pandemic, the Ministry of Health of the Slovak Republic formed a genomics surveillance workgroup, and the Public Health Authority of the Slovak Republic launched a systematic national epidemiological surveillance using whole-genome sequencing (WGS). Six out of seven genomic centers implementing Illumina sequencing technology were involved in the national SARS-CoV-2 virus sequencing program. Here we analyze a total of 33,024 SARS-CoV-2 isolates collected from the Slovak population from 1 March 2021, to 31 March 2022, that were sequenced and analyzed in a consistent manner. Overall, 28,005 out of 30,793 successfully sequenced samples met the criteria to be deposited in the global GISAID database. During this period, we identified four variants of concern (VOC)-Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529). In detail, we observed 165 lineages in our dataset, with dominating Alpha, Delta and Omicron in three major consecutive incidence waves. This study aims to describe the results of a routine but high-level SARS-CoV-2 genomic surveillance program. Our study of SARS-CoV-2 genomes in collaboration with the Public Health Authority of the Slovak Republic also helped to inform the public about the epidemiological situation during the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Slovakia/epidemiology , COVID-19/epidemiology , Genome, Viral , High-Throughput Nucleotide Sequencing , Genomics
5.
Acta Facultatis Pharmaceuticae Universitatis Comenianae ; 69:53-53, 2022.
Article in English | Academic Search Complete | ID: covidwho-1974574

ABSTRACT

A positive association between anemia and all-cause mortality and cardiovascular mortality independent of age, gender, and history of cardiovascular diseases has been confirmed. Disturbed iron metabolism might also play a role in the prognosis of patients with COVID-19. Moreover, alterations of iron homeostasis can persist long after COVID-19 onset and could be associated with impaired physical performance. We aimed to evaluate the levels of parameters associated with iron metabolism in patients hospitalised with COVID-19 during a 1-week period. In our study, 53 patients were included and they were further divided into two groups according to the outcome: positive (recovery and discharge from hospital) or negative (aggravation, exitus, or both). Their blood samples were collected on Days 1, 3, and 7 during hospitalization and basic laboratory analyses were performed, including measurement of iron metabolism parameters. All patients had pathologically increased plasmatic levels of ferritin and decreased levels of transferrin during the whole observation period. We have not found any correlation between levels of these markers and patients' prognosis. However, levels of ferritin significantly decreased and levels of transferrin significantly increased on the seventh day only in patients with a positive outcome. Further studies with a longer observation period are warranted to evaluate the period needed for reestablishment of iron homeostasis. [ FROM AUTHOR] Copyright of Acta Facultatis Pharmaceuticae Universitatis Comenianae is the property of Sciendo and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

6.
Metabolites ; 12(7)2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1938905

ABSTRACT

Several relatively recently published studies have shown changes in plasma metabolites in various viral diseases such as Zika, Dengue, RSV or SARS-CoV-1. The aim of this study was to analyze the metabolome profile of patients during acute COVID-19 approximately one month after the acute infection and to compare these results with healthy (SARS-CoV-2-negative) controls. The metabolome analysis was performed by NMR spectroscopy from the peripheral blood of patients and controls. The blood samples were collected on 3 different occasions (at admission, during hospitalization and on control visit after discharge from the hospital). When comparing sample groups (based on the date of acquisition) to controls, there is an indicative shift in metabolomics features based on the time passed after the first sample was taken towards controls. Based on the random forest algorithm, there is a strong discriminatory predictive value between controls and different sample groups (AUC equals 1 for controls versus samples taken at admission, Mathew correlation coefficient equals 1). Significant metabolomic changes persist in patients more than a month after acute SARS-CoV-2 infection. The random forest algorithm shows very strong discrimination (almost ideal) when comparing metabolite levels of patients in two various stages of disease and during the recovery period compared to SARS-CoV-2-negative controls.

7.
Int J Environ Res Public Health ; 18(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1295825

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having a tremendous impact on the global economy, health care systems and the lives of almost all people in the world. The Central European country of Slovakia reached one of the highest daily mortality rates per 100,000 inhabitants in the first 3 months of 2021, despite implementing strong prophylactic measures, lockdowns and repeated nationwide antigen testing. The present study reports a comparison of the performance of the Standard Q COVID-19 antigen test (SD Biosensor) with three commercial RT-qPCR kits (vDetect COVID-19-MultiplexDX, gb SARS-CoV-2 Multiplex-GENERI BIOTECH Ltd. and Genvinset COVID-19 [E]-BDR Diagnostics) in the detection of infected individuals among employees of the Martin University Hospital in Slovakia. Health care providers, such as doctors and nurses, are classified as "critical infrastructure", and there is no doubt about the huge impact that incorrect results could have on patients. Out of 1231 samples, 14 were evaluated as positive for SARS-CoV-2 antigen presence, and all of them were confirmed by RT-qPCR kit 1 and kit 2. As another 26 samples had a signal in the E gene, these 40 samples were re-isolated and subsequently re-analysed using the three kits, which detected the virus in 22, 23 and 12 cases, respectively. The results point to a divergence not only between antigen and RT-qPCR tests, but also within the "gold standard" RT-qPCR testing. Performance analysis of the diagnostic antigen test showed the positive predictive value (PPV) to be 100% and negative predictive value (NPV) to be 98.10%, indicating that 1.90% of individuals with a negative result were, in fact, positive. If these data are extrapolated to the national level, where the mean daily number of antigen tests was 250,000 in April 2021, it points to over 4700 people per day being misinterpreted and posing a risk of virus shedding. While mean Ct values of the samples that were both antigen and RT-qPCR positive were about 20 (kit 1: 20.47 and 20.16 for Sarbeco E and RdRP, kit 2: 19.37 and 19.99 for Sarbeco E and RdRP and kit 3: 17.47 for ORF1b/RdRP), mean Ct values of the samples that were antigen-negative but RT-qPCR-positive were about 30 (kit 1: 30.67 and 30.00 for Sarbeco E and RdRP, kit 2: 29.86 and 31.01 for Sarbeco E and RdRP and kit 3: 27.47 for ORF1b/RdRP). It confirms the advantage of antigen test in detecting the most infectious individuals with a higher viral load. However, the reporting of Ct values is still a matter of ongoing debates and should not be conducted without normalisation to standardised controls of known concentration.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Europe , Hospitals , Humans , Sensitivity and Specificity , Slovakia/epidemiology
8.
Applied Sciences ; 11(9):4231, 2021.
Article in English | MDPI | ID: covidwho-1223924

ABSTRACT

Background: COVID-19 represents a severe inflammatory condition. Our work was designed to monitor the longitudinal dynamics of the metabolomic response of blood plasma and to reveal presumable discrimination in patients with positive and negative outcomes of COVID-19 respiratory symptoms. Methods: Blood plasma from patients, divided into subgroups with positive (survivors) and negative (worsening condition, non-survivors) outcomes, on Days 1, 3, and 7 after admission to hospital, was measured by NMR spectroscopy. Results: We observed changes in energy metabolism in both groups of COVID-19 patients;initial hyperglycaemia, indicating lowered glucose utilisation, was balanced with increased production of 3-hydroxybutyrate as an alternative energy source and accompanied by accelerated protein catabolism manifested by an increase in BCAA levels. These changes were normalised in patients with positive outcome by the seventh day, but still persisted one week after hospitalisation in patients with negative outcome. The initially decreased glutamine plasma level normalised faster in patients with positive outcome. Patients with negative outcome showed a more pronounced Phe/Tyr ratio, which is related to exacerbated and generalised inflammatory processes. Almost ideal discrimination from controls was proved. Conclusions: Distinct metabolomic responses to severe inflammation initiated by SARS-CoV-2 infection may serve towards complementary personalised pharmacological and nutritional support to improve patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL